A METHOD OF STUDYING THE STATE OF A RAREFIED GAS

A. N. Temchin UDC 533.7

We propose a mathematically correct method of solving the Boltzmann equations.

The evolution of the state of a neutral or weakly ionized gas can be described [1] by means of the
familiar kinetic equation
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Here fdiff(t, T, V) and fdif’lfk(t, T, v) are distribution functions for the particles prior to collision while

f'(l—e—ff(t, r, v} and f‘d—_efg‘(t, r, v') are distribution functions subsequent to collision; Uq——gfo(lv ~—¥! , %, ¥) is
*

the differential scattering cross section for the angles ¢ and ¢ in the center-of-mass system formed by

the colliding molecules; X is the external field; m is the particle mass; the integration is carried out over

all values of the angles and of the components of the velocity v

The most fully developed methods of solving (1) are based either on the series expansion of f(t, r, v)
and of the operator 9/0t in terms of the small parameter (Enskog—Chapman, [2]), or on the series expan-
sion of f(t, r, v) on the basis of a specially constructed system of orthonormal functions (Grad, [2]). In
either case, the calculation of each successive approximation involves ever-increasing difficulties. More-
over, the Enskog series converges only asymptotically, as Kn—0, while the Grad series converges only on
the average, and only if £(t, r, v) diminishes more rapidly as |v| — = then exp{—|v| 2/4}; we do not know
whether the unknown function exhibits this property at any instant of time.

Other methods of constructing the approximate solutions involve the direct proof of the theorems of
existence, which are all the more important, since there is presently no fault-free method of deriving (1).
A number of references ([3]-[9]) are devoted to the problem of whether ornot solutions exist for the Boltzmann
equation. Since the properties of the collision integral are substantially different for the various potentials
of particle interaction, we most frequently examine a gas of Maxwell or pseudo-Maxwell molecules ([4]-(7]).

Below we prove the local theorem on the existence and uniqueness of the solution for Eq. (1), with
rather broad assumptions as to the potential of particle interaction, as well as the uniform convergence of
the sequence of approximations of the exact solution.

The Equation. Let us assume a gas of classical point particles which interact with each other in the
following manner.

We assume that the potential ﬁﬁ(rij) (i = j) of the molecular field is centrally symmetrical and, more-
over, that

[""l/fyi_l, rij‘<ro’

P (riy) ro == const > 0. @)
15 0, 15>,
The collision integral can then be written as
IF= KT —1p dody, ®
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where

K& |v—v'K®), do®dodg, v="_ ‘?,
* v —_—
in which case
jK(ﬁ)dm< ®. (4)
For models of solid spheres with a diameter d we have
K =d?|v—v|sindcosd. (5)

Let us assume that the gas occupies the entire space and thattherearenoexternal fields. With these limita-
tions, the Boltzmann equation has the form

(% + %) f= 5 K[ — i) dodv. ®)

Since the particle masses are identical, the following relationships are valid:
[vEAIVE=IVELIVE,
vV =v4nn v—v), vV =v—n(n, v—v), ()

n = {cos ¥, sin¥cose, sindsine}.

We will solve the Cauchy problem
FO, 1, v) = fo(r, v). 8)
The Solution. Let us introduce the numerical parameters «, X, and ¥; such that
o % %>00 4> o
fa] = VI 1Y [x) =[x =1t}
The solution of the problem for the times t€ (0, X;) will be sought in the form
[t &, WEFE, 1, vexp{—a@—1|v[} (10)

where F(t, r, v) is a new unknown function. Assuming f(r, v) to be limited and diminishing rather rapidly
as |v]|— « we require that Fy(, v)d-f—_ffo(r, viexplax vl 2} be limited. We then find the condition for the nu-
merical value of the product ay, i.e.,

fo (r, v)expfay | v |%} < co. (11)

The function FdefF t, r, v) satisfies the equation

(2,2 2\ F — —a(— )|V FF — 12
(55 +ulvP)F = [Kew—a—0lyBEE — PR dody (12

with the initial equation
F(0, 1, v) = Fyo(r, V)R, (13)
The following integral equation corresponds to this problem:

F = Stexp {(—a|v[E(t—"1)} [ (K, (F'F" —FF)dodv L dv + [Folsexp {—a|v 2}, 14
g v * % * —T

K= Kexp{—a(—1)Iy,

or in operator notation

F=AF, A% A +[F)exp{—a]v[t). (15)
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In Eq. (14) the brackets [ ] denote a "backward" shift operator (by time s) with respect to the character-
istics of the equation:
2 5
— 4 v—ju=0.
et

or

As is usual, we will use C to denote the space of continuous bounded functions which depend on the
variables t, r, and v, with 0 =t = y;, [r| = =, [v] = ©. The distance function in C is determined from the
expression

lx—yl=max]x—yl, x yeC.
We will demonstrate that if Fy€ C, we have AC < C. Indeed, in this case
[Fol:exp {—a|vi}eC,
and with x€ C

JAx] <2} xp? : (16)

f exp{—a|v]{t—1)} [ f Kedmd\ﬂtﬂdr

Let us introduce the function

t
L(t; V¥ [exp{—a|vP(t—0) [ [Kdody| _ dr (17)
0
Since Kg increases as |v — v| — % no more rapidly than linearly, L(t, v) is limited and exhibits the following
property: *
L{t, v)—0. (18)

-0
For example, it is easy to show that for the solid-sphere model

Lit, v)<oS(v|l + Iy—=sel=alvPs

(19)
alv[E

where S is the complete scattering cross section, and I; and I, are certain integrals which can be calculated
in elementary functions, i.e.,

3/2 372,

I~ (“_"__) Y AR - | (20)
@ (X —%) / T (3/2) {a (-0

The operator A thus is effective in the space C.

Let A be given in the elements of a closed sphere S(4, R) = C; &difﬁ (t, v, v) = 0 is the null of the
space C. Let us determine under which conditions A is a compression operator, for which purpose we eval-
uate the magnitude || Ax — Ay|; x, y, A€ 8@, R), i.e.,

1Ax — Ayl = Ax— Ay

det

f exp{—a|v[({—1)} U K, (x'{' — xic)dma!\ﬂt_t dr — 'S"exp {—alvi{t —1)} UKe (y’%’ —44) dmdﬂ _dr U
b 6

1t
<Y —y'y) — =y [ VLG < Q28 — gy V+ [ — gy DI, v
SAE =X 1+HIE =g T+ 1= 5]+ 1= o) ILE VIS ARIL ¢ V42— gl
Assuming
LA&E4R (L2, v (21)
and using property (18) of the function L(t, v), for any R and a sufficiently small Xy we will have

JAx— Ay <Ljlx—yl L,<l. (22)
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The operator A, determined on any closed sphere of the Banach space C under known conditions is thus a
compression operator. It transforms S(¢, R) into S(3, R), provided that

TAx) <WAx] +]Fol <LR +|F] <R, x€S(8, R).
From this we have the condition for Fy:
1Pl < —LyR. (23)

In accordance with the principle of compressed mappings the operator A in S(:4, R) then has a single non-
moving point, while Eq. (14) has a unique solution to which the sequence {x,, = Ax,} converges uniformly
for any initial element x,€ S(4, R). The speed of its convergence is characterized by the inequality

lx — 2o | <L (=L gy 1] sy — 2, (24)
where x is the exact solution.

The nonnegative solution of the Cauchy problem for (12) can be found by turning to an integral equation
in Enskog form, assuming that Fj =0
t t t

F = {exp{—al|v[*{t—7)— | ILF),  ds}INF],_dv + [Fol,exp {—a|v ¢ — [ LF],_,ds). (25)

4] T k]

By definition

LF%S f K Fdody,
NF & j K F'F'dodv.
In operator notation (25) assumes the form
F=AF, A%A+Az. (26)

The operator Ag is positive and acts in the cone C. of nonnegative functions of the space C.

According to the property of the norm, [Agx — Ayl <[l Agix — Agyll + | ARpx - Agyyll. Since Lis a
positive operator, with x, y€ C, (1 8(4, R) and t = t; = 0 the following relationship is satisfied:

Iexp {— ( [Lx]_, ds} — exp{— St [Lyl,_ds }‘ < f[L | x— gyl ds. 27)
7

iy o

Hence it follows that
1Agx — Agyl

def
=

fexp {-—a VIRt — 1) — gt[Lx Toos ds} [Nxl,_, dv — 3 exp {-——é [VE(E—1) — S? Lyl ds} [Nyl dt“
Q9 LT 9 T

1 ’ ot ¢
<]|§exp{—a|vnz(¢_—¢)}an—Ny Ilt_,dr“ +"§exp{——a[v]2(t—‘r)} (5 [L1x—ylsds) [Nyl o dv " (28)

t

1A x— Ag, || 1Fy) (exp {— alv— f (L], ds} —exp {— alv— y (Lyl,., ds}“
)]

0

t
<[ Fol-| exp{—alvPey [ILIx—yli.ds|. (29)
0
The obvious inequalities
i ¢
(L2 —plleads < L —y] | [[K, dodvl,,ds, (30)
% fo
|Nx—Ny;<[|x~yn2RB'Kedmdg @81
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permit us to contend that
[Apx— Ayl < (Lo (s V)] + Lot W) lx —yd EL 5 —yb (32)

where L;(t, v) and L, (t, v) are functions whose explicit form follows (30) and (31); they both diminish as

t —0. Therefore, with a sufficiently small X, the operator Ap is compressive. For F it is easy to find

the condition under which AgC, N S, Ry < C4 NS, R). Equation (25) then has a single solution in C4 NS,
R), on which the sequence {x,+; = Agx,} converges uniformly.

It is thus proved that the solutions of the integral equations (14) and (25) can be found as the limits of
uniformly converging sequences of a specific form. At the instant t = ¥;, specifying a new initial condition
fldﬁ_fF()g, r, vexp{—a (X — X1)|V| 2} and again applying the outlined considerations, we find a solution in the
time interval (xy, xo). then in (x,, X3, etc., continuing in this manner to any interval at which the solution is
limited and diminishes rather rapidly as |v| — .

Remark, In analogous fashion we can examine the equation

d 3} Xy 0 \. ror
— —_—F = —|f = — ff) dwdv, 33
(at +vo 2 av)’ XK(fg I dod (39)
if X(r) =—grad U(r) and U(r) > — =, i.e., the external field is conservative and shows no infinitely deep po-

tential wells. We then present the solution in the form

fit, v, VEFE 1, vyep{—Bly — e, v},

1

(34)
er, v)éii?m.'vfz +U(),

where f is some numerical parameter. In the integral equation corresponding to (14) instead of exp{-o lv|?
(t -7)} we have the term

exp{ —B\[e(r, v)],, ds},

Ay

because the shift operator [ J;_g with respect to the characteristics of the equation

S 0 XM 9, _
(Gt +v0r+ m av>u~.0

operates on r and v. However, g(r, v) is the total energy of the particle moving in the potential field; con-
sequently,

[e(r, V)], ,=e(r, V).
Therefore, for ¥ we obtain the equation

¢
F={exp{—Pe(r, v) (¢ —0} [ [ K, (FF' —FF)dadv |,__dv+ [Fol;exp {—pe (r, v) 1},
) :

KA Kexp{—p(—0e(r, W)}
The nature of the proof subsequently is virtually no different from the case in which X(r) = 0.

NOTATION

is the time;

is the radius vector of the particle;

is its mass;

is its velocity;

is the external field;

is the differential scattering cross section;
is the complete scattering cross section;
are the scattering angles;

g
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|
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Kn is the Knudsen number;

£, *f(,f', gk' are distribution functions;

ﬁﬂ(rij) is the potential of the molecular field;

T is the distance between particles with the numbers i and j;

Ty is the "clipping" parameter of the potential Gﬂ(rij);

I is the collision operator;

K is its kernel;

K(#) is the angular portion of the kernel K;

d is the diameter of the molecule in the model of the solid spheres;

o, B, X, Xi5 X9 X3 are numerical parameters;

F is the new unknown function;

F, is a function related to the initial condition;

Ke is the transformed kernel of the collision operator;

[ g is the shift operator (by time s) with respect to the characteristics of the differen-
tial equations;

C is the space bounded by continuous functions;

C, is its cone of nonnegative functions;

I i is the norm of the element x;

A, Ay, AE; AE1, AE
L(ts V), Li(t’ V), LZ(t: v)

are the integral operators effective in C;
are auxiliary functions;

I, L are the integrals in (20);
T is the y-function;
S@2, R) is a closed sphere in the space C;
&dﬁ_f(t, ryY is the center of this sphere (the null of the space C).
R is its radius;
La, Lg are the constants of the Lipschitz operators A and Ag;
U@ is the potential of the external field;
£(r, v) is the total energy of the particles in the field X(r);
def is the equality sign introduced by definition;
L, N are operators in Ag.
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